Open
Graph Drawing
Framework

 v. 2023.09 (Elderberry)
 

MaximumPlanarSubgraph.h
Go to the documentation of this file.
1 
32 #pragma once
33 
34 #include <ogdf/basic/Array.h>
35 #include <ogdf/basic/Graph.h>
36 #include <ogdf/basic/GraphList.h>
37 #include <ogdf/basic/List.h>
38 #include <ogdf/basic/Module.h>
39 #include <ogdf/basic/SList.h>
40 #include <ogdf/basic/basic.h>
46 
47 #include <ogdf/external/abacus.h>
48 
49 namespace ogdf {
50 
52 
55 template<typename TCost>
57 public:
58  // Construction
60 
61  // Destruction
62  virtual ~MaximumPlanarSubgraph() { }
63 
64  virtual MaximumPlanarSubgraph* clone() const override { return new MaximumPlanarSubgraph(); }
65 
66 protected:
67  // Implements the Planar Subgraph interface.
68  // For the given graph \p G, a clustered graph with only
69  // a single root cluster is generated.
70  // Computes set of edges delEdges, which have to be deleted
71  // in order to get a planar subgraph; edges in preferredEdges
72  // should be contained in planar subgraph.
73  // Status: pCost and preferredEdges are ignored in current implementation.
74  virtual Module::ReturnType doCall(const Graph& G, const List<edge>& preferredEdges,
75  List<edge>& delEdges, const EdgeArray<TCost>* pCost, bool preferredImplyPlanar) override {
76  if (G.numberOfEdges() < 9) {
78  }
79 
80  //if the graph is planar, we don't have to do anything
81  if (isPlanar(G)) {
83  }
84 
85  //Exact ILP
87 
88  delEdges.clear();
89 
90  NodeArray<node> tableNodes(G, nullptr);
91  EdgeArray<edge> tableEdges(G, nullptr);
92  NodeArray<bool> mark(G, 0);
93 
94  EdgeArray<int> componentID(G);
95 
96  // Determine biconnected components
97  int bcCount = biconnectedComponents(G, componentID);
98  OGDF_ASSERT(bcCount >= 1);
99 
100  // Determine edges per biconnected component
101  Array<SList<edge>> blockEdges(0, bcCount - 1);
102  for (edge e : G.edges) {
103  if (!e->isSelfLoop()) {
104  blockEdges[componentID[e]].pushFront(e);
105  }
106  }
107 
108  // Determine nodes per biconnected component.
109  Array<SList<node>> blockNodes(0, bcCount - 1);
110  int i;
111  for (i = 0; i < bcCount; i++) {
112  for (edge e : blockEdges[i]) {
113  if (!mark[e->source()]) {
114  blockNodes[i].pushBack(e->source());
115  mark[e->source()] = true;
116  }
117  if (!mark[e->target()]) {
118  blockNodes[i].pushBack(e->target());
119  mark[e->target()] = true;
120  }
121  }
122  for (node v : blockNodes[i]) {
123  mark[v] = false;
124  }
125  }
126 
127 
128  // Perform computation for every biconnected component
130  if (bcCount == 1) {
131  mr = callWithDouble(mc, G, pCost, delEdges);
132  } else {
133  for (i = 0; i < bcCount; i++) {
134  Graph C;
135 
136  for (node v : blockNodes[i]) {
137  node w = C.newNode();
138  tableNodes[v] = w;
139  }
140 
141  EdgeArray<double> cost(C);
142 
143  for (edge e : blockEdges[i]) {
144  edge f = C.newEdge(tableNodes[e->source()], tableNodes[e->target()]);
145  tableEdges[e] = f;
146  if (pCost != nullptr) {
147  cost[tableEdges[e]] = (*pCost)[e];
148  }
149  }
150 
151  // Construct a translation table for the edges.
152  // Necessary, since edges are deleted in a new graph
153  // that represents the current biconnected component
154  // of the original graph.
155  EdgeArray<edge> backTableEdges(C, nullptr);
156  for (edge e : blockEdges[i]) {
157  backTableEdges[tableEdges[e]] = e;
158  }
159 
160  // The deleted edges of the biconnected component
161  List<edge> delEdgesOfBC;
162 
163  ClusterGraph CG(C);
164  mr = mc.call(CG, pCost == nullptr ? nullptr : &cost, delEdgesOfBC);
165 
166  // Abort if no optimal solution found, i.e., feasible is also not allowed
167  if (mr != Module::ReturnType::Optimal) {
168  break;
169  }
170 
171  // Get the original edges that are deleted and
172  // put them on the list delEdges.
173  while (!delEdgesOfBC.empty()) {
174  delEdges.pushBack(backTableEdges[delEdgesOfBC.popFrontRet()]);
175  }
176  }
177  }
178  return mr;
179  }
180 
181 
182 private:
183  // Call algorithm with costs as double. All underlying algorithms cast the costs to double on use eventually.
184  // However, only convert the costs if they are not given as double already.
185  template<typename U = TCost>
187  const EdgeArray<U>* pCost, List<edge>& delEdges) {
188  if (pCost == nullptr) {
189  return callWithDouble(mc, G, nullptr, delEdges);
190  } else {
191  EdgeArray<double> dCost(G);
192  for (auto it = pCost->begin(); it != pCost->end(); ++it) {
193  dCost[it.key()] = it.value();
194  }
195  return callWithDouble(mc, G, &dCost, delEdges);
196  }
197  }
198 
200  const EdgeArray<double>* pCost, List<edge>& delEdges) {
201  ClusterGraph CG(G);
202  return mc.call(CG, pCost, delEdges);
203  }
204 };
205 
206 }
ogdf
The namespace for all OGDF objects.
Definition: multilevelmixer.cpp:39
ogdf::PlanarSubgraphModule
Interface for planar subgraph algorithms.
Definition: PlanarSubgraphModule.h:53
Graph.h
Includes declaration of graph class.
ogdf::MaximumPlanarSubgraph
Exact computation of a maximum planar subgraph.
Definition: MaximumPlanarSubgraph.h:56
abacus.h
Includes Abacus.
OGDF_ASSERT
#define OGDF_ASSERT(expr)
Assert condition expr. See doc/build.md for more information.
Definition: basic.h:66
ogdf::List::popFrontRet
E popFrontRet()
Removes the first element from the list and returns it.
Definition: List.h:1591
extended_graph_alg.h
Declaration of extended graph algorithms.
ogdf::MaximumPlanarSubgraph::clone
virtual MaximumPlanarSubgraph * clone() const override
Returns a new instance of the planar subgraph module with the same option settings.
Definition: MaximumPlanarSubgraph.h:64
ogdf::isPlanar
bool isPlanar(const Graph &G)
Returns true, if G is planar, false otherwise.
Definition: extended_graph_alg.h:284
ogdf::MaximumPlanarSubgraph::doCall
virtual Module::ReturnType doCall(const Graph &G, const List< edge > &preferredEdges, List< edge > &delEdges, const EdgeArray< TCost > *pCost, bool preferredImplyPlanar) override
Computes the set of edges delEdges which have to be deleted to obtain the planar subgraph.
Definition: MaximumPlanarSubgraph.h:74
ogdf::CPlanarSubgraphModule::call
ReturnType call(const ClusterGraph &G, List< edge > &delEdges)
Computes set of edges delEdges, which have to be deleted in order to get a c-planar subgraph.
Definition: CPlanarSubgraphModule.h:62
ogdf::Module::ReturnType::Optimal
@ Optimal
The solution is optimal.
ogdf::MaximumPlanarSubgraph::MaximumPlanarSubgraph
MaximumPlanarSubgraph()
Definition: MaximumPlanarSubgraph.h:59
ogdf::EdgeElement::isSelfLoop
bool isSelfLoop() const
Returns true iff the edge is a self-loop (source node = target node).
Definition: Graph_d.h:419
PlanarSubgraphModule.h
Declaration of interface for planar subgraph algorithms.
SList.h
Declaration of singly linked lists and iterators.
ogdf::Array
The parameterized class Array implements dynamic arrays of type E.
Definition: Array.h:219
GraphList.h
Decralation of GraphElement and GraphList classes.
ogdf::EdgeElement::source
node source() const
Returns the source node of the edge.
Definition: Graph_d.h:398
ogdf::MaximumCPlanarSubgraph
Exact computation of a maximum c-planar subgraph.
Definition: MaximumCPlanarSubgraph.h:62
ogdf::List< edge >
ogdf::internal::GraphRegisteredArray
RegisteredArray for nodes, edges and adjEntries of a graph.
Definition: Graph_d.h:658
ogdf::Graph
Data type for general directed graphs (adjacency list representation).
Definition: Graph_d.h:869
MaximumCPlanarSubgraph.h
Declaration of an exact c-planar subgraph algorithm, i.e., a maximum c-planar subgraph is computed us...
ogdf::biconnectedComponents
int biconnectedComponents(const Graph &G, EdgeArray< int > &component, int &nonEmptyComponents)
Computes the biconnected components of G.
basic.h
Basic declarations, included by all source files.
ogdf::MaximumPlanarSubgraph::callWithDouble
Module::ReturnType callWithDouble(MaximumCPlanarSubgraph &mc, const Graph &G, const EdgeArray< U > *pCost, List< edge > &delEdges)
Definition: MaximumPlanarSubgraph.h:186
ogdf::Graph::newNode
node newNode(int index=-1)
Creates a new node and returns it.
Definition: Graph_d.h:1064
Array.h
Declaration and implementation of Array class and Array algorithms.
ogdf::MaximumPlanarSubgraph::~MaximumPlanarSubgraph
virtual ~MaximumPlanarSubgraph()
Definition: MaximumPlanarSubgraph.h:62
ogdf::EdgeElement
Class for the representation of edges.
Definition: Graph_d.h:363
ClusterGraph.h
Derived class of GraphObserver providing additional functionality to handle clustered graphs.
List.h
Declaration of doubly linked lists and iterators.
Module.h
Declares base class for all module types.
ogdf::EdgeElement::target
node target() const
Returns the target node of the edge.
Definition: Graph_d.h:401
ogdf::Module::ReturnType
ReturnType
The return type of a module.
Definition: Module.h:52
ogdf::Graph::newEdge
edge newEdge(node v, node w, int index=-1)
Creates a new edge (v,w) and returns it.
Definition: Graph_d.h:1083
ogdf::ClusterGraph
Representation of clustered graphs.
Definition: ClusterGraph.h:346
ogdf::NodeElement
Class for the representation of nodes.
Definition: Graph_d.h:240
simple_graph_alg.h
Declaration of simple graph algorithms.
ogdf::List::pushBack
iterator pushBack(const E &x)
Adds element x at the end of the list.
Definition: List.h:1547
ogdf::internal::EdgeArrayBase2
RegisteredArray for edges of a graph, specialized for EdgeArray<edge>.
Definition: Graph_d.h:716
ogdf::List::clear
void clear()
Removes all elements from the list.
Definition: List.h:1626
ogdf::MaximumPlanarSubgraph::callWithDouble
Module::ReturnType callWithDouble(MaximumCPlanarSubgraph &mc, const Graph &G, const EdgeArray< double > *pCost, List< edge > &delEdges)
Definition: MaximumPlanarSubgraph.h:199